8,707 research outputs found

    Heat Shock Protein 20 (HSP20) is a novel substrate for Protein Kinase D1 (PKD1)

    Get PDF
    Heat shock protein 20 (HSP20) has cardioprotective qualities, which are triggered by PKA phosphorylation. PKD1 is also a binding partner for HSP20, and this prompted us to investigate whether the chaperone was a substrate for PKD1. We delineate the PKD1 binding sites on HSP20 and show for the first time HSP20 is a substrate for PKD1. Phosphorylation of HSP20 by PKD1 is diminished by pharmacological or siRNA reduction of PKD1 activity and is enhanced following PKD1 activation. Our results suggest that both PKA and PKD1 can both phosphorylate HSP20 on serine 16 but that PKA is the most dominant

    Surface Potential Decay and DC Conductivity of TiO2-based Polyimide Nanocomposite Films

    No full text
    Polymer nanocomposites have attracted wide interest as a method of enhancing polymer properties and extending their applications. Surface potential decay has been used widely as a tool to monitor charge transport and trapping characteristics of insulating materials. Polyimide (PI) as an engineering material has been paid more attention due to high thermal and chemical stability, good mechanical property and excellent insulating property in a wide range of temperature. There has been a lot of work over last few years on optical, thermal and mechanical properties of polyimide nanocomposites. However, little attention has been given to the effect of nano-fillers on charge transport and trapping in polyimide nanocomposites. In the present paper, pure, 1%, 3%, 5% and 7% polyimide nanocomposites was examined by using surface potential decay in conjunction with dc conductivity measurement and both experiments showed that 3% is the optimal value for electrical insulation

    Stationary Distributions for Retarded Stochastic Differential Equations without Dissipativity

    Full text link
    Retarded stochastic differential equations (SDEs) constitute a large collection of systems arising in various real-life applications. Most of the existing results make crucial use of dissipative conditions. Dealing with "pure delay" systems in which both the drift and the diffusion coefficients depend only on the arguments with delays, the existing results become not applicable. This work uses a variation-of-constants formula to overcome the difficulties due to the lack of the information at the current time. This paper establishes existence and uniqueness of stationary distributions for retarded SDEs that need not satisfy dissipative conditions. The retarded SDEs considered in this paper also cover SDEs of neutral type and SDEs driven by L\'{e}vy processes that might not admit finite second moments.Comment: page 2

    Exponential Mixing for Retarded Stochastic Differential Equations

    Full text link
    In this paper, we discuss exponential mixing property for Markovian semigroups generated by segment processes associated with several class of retarded Stochastic Differential Equations (SDEs) which cover SDEs with constant/variable/distributed time-lags. In particular, we investigate the exponential mixing property for (a) non-autonomous retarded SDEs by the Arzel\`{a}--Ascoli tightness characterization of the space \C equipped with the uniform topology (b) neutral SDEs with continuous sample paths by a generalized Razumikhin-type argument and a stability-in-distribution approach and (c) jump-diffusion retarded SDEs by the Kurtz criterion of tightness for the space \D endowed with the Skorohod topology.Comment: 20 page

    A new approach to understanding the frequency response of mineral oil

    No full text
    Dielectric spectroscopy is non-invasive diagnostic method and can give information about dipole relaxation, electrical conduction and structure of molecules. Since the creation of charge carriers in mineral oil is not only from dissociation but also injection from electrodes, the injection current cannot be simply ignored. The polarization caused by the charge injection has been studied in this paper. Based on our research, if the mobility of the injected charge carriers is fast enough so that they can reach the opposite electrode, the current caused by the injection will contribute only to the imaginary part of the complex permittivity and this part of the complex permittivity will decrease with the frequency with a slope of -1 which is in a good agreement with the experimental result. The classic ionic drift and diffusion model and this injection model will be combined to make an improved model. In this paper, the frequency responses of three different kinds of mineral oils have been measured, and this modified model has been used to simulate the experiment result. Since there is only one unknown parameter in this improved model, a better understanding of the frequency response in mineral oil can be achieve
    • …
    corecore